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SUMMARY 

A theoretical  method  has  been  developed  for  computing  approximate  laminar 
heating  rates  on  three-dimensional  configurations  at  angle  of  attack.  The 
method  is  based  on  the  axisymmetric  analogue  which  is  used  to  reduce  the  three- 
dimensional  boundary-layer  equations  along  surface  streamlines  to  an  equivalent 
axisymmetric  form  by  using  the  metric  coefficient  which  describes  streamline 
divergence (or convergence).  The  method  has  been  coupled  with  a  three- 
dimensional  inviscid  flow  field  program  for  computing  surface  streamline  paths, 
metric  coefficients,  and  boundary-layer  edge  conditions. Good agreement  has 
been  obtained  with  experimental  data  on  a  spherically  blunted 15O half-angle 
cone,  a  spherically  blunted 80° sweep  slab  delta  wing,  and  a  Space  Shuttle 
Orbiter  type  configuration  at  angles  of  attack  up  to 25O. The  method  provides 
a  useful  means  of  computing  heating  rates on advanced  entry  configurations. 

INTRODUCTION 

With  the  development of the  Space  Shuttle  transportation  system  well  under 
way,  attention  is  being  focused  on  more  advanced  Earth  orbital  transportation 
systems  which  will  be  expected  to  replace  the  Space  Shuttle  system  near  the  end 
of  this  century.  These  vehicles  will  be  subjected  to  severe  aerodynamic  heating 
during  reentry,  and  the  design  of  their  thermal  protection  systems  will  require 
detailed  information  on  surface  heating  rates.  Three-dimensional  winged  config- 
urations  are  currently  being  considered  (refs. 1 and 2) and  they  will  probably 
fly  at  relatively  large  angles  of  attack.  It  will  first  be  necessary to compute 
the  three-dimensional  viscous  flow  over  the  vehicle  in  order  to  accurately  pre- 
dict  the  surface  heating  rates. 

With  advances  in  high-speed  computers  and  numerical  techniques,  much  prog- 
ress  has  been  made  in  recent  years  in  computing  viscous  compressible  flows  using 
the  Navier-Stokes  equations  (ref. 3 ) .  However,  solutions  for  general  three- 
dimensional  winged  configurations  are  far  beyond  the  "state  of  the  art"  of  cur- 
rent  applications,  and  their  demand on computer  resources  would  far  exceed  the 
capabilities  of  the  current  generation  of  computers. 

Much  of  the  needed  information on surface  heating  rates  can  be  obtained 
from  a  "classical  approach"  where  the  outer  inviscid  flow  field  is  computed 
independent of the  boundary  layer  and is used to provide  edge  conditions  for  a 
three-dimensional  boundary-layer  calculation  near  the  surface.  Solutions  have 
been  obtained  for  the  general  three-dimensional  compressible  boundary-layer 
equations.  (See,  for  example,  refs. 4 to 8 . )  To date,  the  application  of  these 
methods  has  been  limited  to  relatively  simple  geometries. An attempt  has  been 
made  to  extend  the  method  of  reference 5 to  more  realistic  configurations;  but, 
it  has  not  yet  been  successful.  However,  even  if  these  methods  could  be  applied 
to  the  configurations of interest  in  the  present  study,  their  use  would  be  cost 
prohibitive  for  design  calculations. 



Cooke  has  developed  an  axisymmetric  analogue  for  the  general  three- 
dimensional  compressible  boundary-layer  equations  (ref. 9)  which  greatly  simpli- 
fies  the  calculation  of  three-dimensional  viscous  flows.  Following  that 
approach,  the  general  three-dimensional  boundary-layer  equations  are  written  in 
streamline  coordinates  and  the  cross-flow  velocities  (tangent  to  the  surface  and 
normal  to  streamline  direction)  are  assumed  zero.  This  reduces  the  three- 
dimensional  boundary-layer  equations  to a form  identical  to  that  for  axisymmet- 
ric  flow  provided: ( 1 )  the  distance  along a streamline  is  interpreted as dis- 
tance  along  an  "equivalent  axisymmetric  body"  and (2)  the  metric  that  describes 
the  spreading  of  the  streamlines  is  interpreted  as  the  radius  of  the  equivalent 
axisymmetric  body.  This  allows  any  existing  axisymmetric  boundary-layer  program 
to be used  to  compute  three-dimensional  heating  rates  along a streamline  in 
regions  where  the  small  cross-flaw  assumption  is  valid.  By  considering  multiple 
streamline  paths,  an  entire  vehicle  can be covered. 

Hayes  (ref. 10) has  shown  that  the cross flow  in  the  boundary  layer  is 
small  when  the  streamline  curvature is small.  Vaglio-Laurin  (ref. 1 1 )  has  shown 
that  when  the  wall  is  highly  cooled  the cross flow  in  the  boundary  layer  is 
small  even  for  cases  where  the  streamline  curvature is not  small.  Further,  in 
references 12  to 14 ,  for  example,  comparisons  with  experimental  data  and  other 
theoretical  calculations,  including  some  cases  where  the cross flow  in  the 
boundary  layer is not  small,  indicate  that  reasonably  accurate  heating  rates  can 
be obtained  using  the  axisymmetric  analogue. 

The  most  obvious  difficulty  in  applying  this  technique is that  of  computing 
the  three-dimensional  inviscid  flow  field  from  which  the  surface  streamline  pat- 
tern  and  the  metrics  are  determined.  In  reference 15, DeJarnette  and  Hamilton 
present a relatively  simple  method  of  calculating  the  streamline  location  and 
metric  coefficient  along  the  streamline  from a known  surface  pressure  distribu- 
tion.  With  this  approach  the  path  of a single  streamline  is  computed on the 
surface;  simultaneously, a second-order  differential  equation is solved  along 
the  streamline  for  the  metric.  The  major  difficulty  with  this  approach  is  that 
second  derivatives  of  the  surface  pressure  are  required  to  calculate  the  metric. 
These  are  very  difficult  to  obtain  with  sufficient  accuracy  from  either  experi- 
mental  measurements or approximate  methods  (such as Newtonian  theory)  except  for 
a few simple  cases. In reference 16, DeJarnette  presents  an  improved  method  for 
calculating  the  inviscid  surface  streamlines. Two adjacent  streamlines  are  com- 
puted  from a.known surface  pressure  distribution,  using  only  first  derivatives 
of  the  pressure;  and  the  metric  is  obtained  by  determining  the  rate  at  which  the 
streamlines  spread on the  surface.  This  is a much  better  approach  since  it 
relaxes  some  requirements  upon  the  accuracy  of  the  input  surface  pressure  dis- 
tribution.  However,  it  still  requires  more  detailed  pressure  distributions  than 
are  generally  available  from  most  experimental  studies. 

In  both  references 17 and 18, methods  have  been  presented  for  computing  the 
metric  coefficient on the  surface  of a body  from  an  inviscid  flaw  field  solu- 
tion.  However,  in  each  case  it  would be very  difficult  to  accurately  compute 
the  metric  coefficient  at  the  boundary-layer  edge  using  these  methods.  Although 
this  will  not be considered  in  the  present  paper,  it  is  important  that  the  cho- 
sen  technique  should  not  have  such a limitation.  Since  in  the  present  approach, 
the  metric  coefficient is computed  from  information on two  adjacent  streamlines, 
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it  will  be  very  easy  to  extend  the  method  to  use  boundary-layer  edge  conditions 
to  compute  the  metric  coefficient  at  the  boundary-layer  edge. 

Recently,  a  method  has  been  developed  for  computing  the  three-dimensional 
inviscid  flow  field  over  general  configurations  at  angle  of  attack.  (See 
refs. 17 and 19.) Using  information  about  the  velocity  directions  from  the 
inviscid  solution,  streamlines  can  be  traced  on  the  vehicle  surface.  Then,  a 
method  similar  to  that  presented  by  DeJarnette  (ref. 16) can  be  used  to  compute 
the  metrics  along  each  streamline.  This  approach  offers  the  advantage  of  com- 
puting  heating  rates  on  three-dimensional  vehicles  without  requiring  experimen- 
tal  pressure  distributions. 

In  the  present  paper,  an  axisymmetric  analogue  method  for  computing  heating 
rates on three-dimensional  configurations  at  angle  of  attack  is  developed.  The 
necessary  inviscid  streamline  information  was  obtained  using  the  inviscid- 
solution  procedure  of  reference 17. The  accuracy  of  this  solution  technique  is 
demonstrated  by  direct  comparison  of  computed  heating  rates  with  experimental 
data. 

The  information  presented  in  this  report  was  included  in  a  report  entitled 
"Calculation  of  Heating  Rates on Three-Dimensional  Configurations"  submitted  in 
partial  fulfillment  of  the  requirements  for  the  Degree  of  Engineer,  The  George 
Washington  University,  December  1979. 

SYMBOLS 

A 

- 
A 

parameter  in  transformation  from  cylindrical  to  local  polar 
coordinates 

parameter  in  transformation  from  local  polar to cylindrical 
coordinates 

specific  heat  at  constant  pressure,  J/kg-K 

specific  heat  at  constant  volume,  J/kg-K 

static  enthalpy,  J/kg 

local  enthalpy  at  edge  of  boundary  layer,  J/kg 

reference  heat-transf  er  coefficient, W/m2-s-K 

stagnation-point  heat-transfer  coefficient,  W/m2-s-K 

heat-transf  er  coefficient  at  wall,  W/m2-s-K 

metric  coefficient  in  <-direction,  m 

metric  coefficient  in  B-direction,  m 
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H 

k 

k 
- 

L 

1 

M 

NPr 

NRe 

n 

V t  

total  enthalpy,  J/kg 

thermal   conduct iv i ty ,  W/m-K 

s t reaml ine   curva ture ,  1 /m 

length,  m 

dis tance  measured  a long  leading  edge of delta wing, m 

Mach number 

P rand t l  number,  cpp/k 

uni t   Reynolds  number 

dis tance  normal  to su r face ,  m 

press ur e, N/& 

heat - t ransf  er rate, W/m2 

dis tance  normal  to s t reaml ine   on   sur face ,  m 

recovery factor 

radius of   curvature   of   spherical   nose,  m 

displacement of coord ina te  pole, m 

local polar coord ina te s  (see f i g .  4 )  

c y l i n d r i c a l   c o o r d i n a t e s  (see f i g .  4 )  

c o n s t a n t   i n   S u t h e r l a n d ' s   v i s c o s i t y  law, K 

d i s t ance   a long   s t r eaml ine ,  m 

arc length ,  m 

temperature, K 

ra t io  of en tha lp i e s ,  he/He 

v e l o c i t y  component i n   6 - d i r e c t i o n ,  m/s 

f ree-s t ream  ve loc i ty ,  m/s  

v e l o c i t y  component i n   6 - d i r e c t i o n ,  m/s 

v e l o c i t y  component def ined by equat ion  (Bl ) , m/s  
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W 

v e l o c i t y  component de f ined  by equa t ion  (B2), m/s 

ve loc i ty   canponen t   i n   n -d i r ec t ion ,  m/s 

W t  v e l o c i t y  component de f ined  by equa t ion  (B3) , m/s 

w1 I W 2 r  w3 Cartesian  veloci ty   canponents   def . ined by ske tch  (a) of 
appendix B, m/s 

X I  yr Ca r t e s i an   coord ina te s  (see f i g .  5) 

a a n g l e  of attack 

B 

B 
- 

coordinate  normal to s t r eaml ine   on   su r f ace  

boundary-layer   veloci ty   gradient  parameter 

r geometry   angle   def ined  by equa t ion  (22) (see ske tch  (c) of appendix B) 

Y r a t i o  of s p e c i f i c   h e a t s ,  cp/cv 

64 geometry  angle   def ined by equa t ion  (21 ) (see ske tch  (b)  of appendix B) 

TW r a t io  of to ta l  e n t h a l p i e s ,  Hw/He 

0 

5 

f 

slope of to ta l  e n t h a l p y   p r o f i l e  a t  wall, 1 a: - J, 
transformed  boundary-layer  coordinate  normal to wall 

a n g l e   d e f i n i n g   v e l o c i t y   d i r e c t i o n   o n   s u r f a c e  measured r e l a t i v e  t o  
meridional   plane (see f i g .  8 )  

v i s c o s i t y ,  N-s/m2 

coo rd ina te   a long   s t r eaml ine   on   su r f ace  

transformed  boundary-layer  coordinate  along  surf ace 
s t r e a m l i n e  

d e n s i t y ,  kg/m3 

d i s s i p a t i o n   f u n c t i o n ,  . W/m3 

Subscr ipts :  

b body 

max  maximum 
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e  edge  of  boundary  layer 

S inviscid  stagnation  point 

W wa 11 

W free  stream 

METHOD OF SOLUTION 

In  the  sections  that  follow,  a  method  for  calculating  heating  rates on 
three-dimensional  configurations  using  the  axisymmetric  analogue  (ref. 9) is 
described,  and  the  equations  necessary  for  applying  the  technique  are  developed. 
The  assumptions  made  from  the  outset  are  that: (1 ) the  Reynolds  number  of  the 
flow is sufficiently  large so that  boundary-layer  concepts  apply; (2) the  fluid 
is a  perfect  gas; ( 3 )  the  flow is laminar;  and ( 4 )  the  entropy  at  the  edge  of 
the  boundary  layer is constant.  Although  the  last  three  assumptions  are  not 
necessary,  they  will  simplify  the  development  of  the  technique. 

Axisymmetric  Analogue 

Consider an orthogonal  streamline  coordinate  system (5, B,n)  where 6 is 
directed  along  an  inviscid  surface  streamline  and  n is distance  measured  along 
the  outward  normal  from  the  surface  (fig. 1).  The  element  of  arc  length ds in 
such  a  curvilinear  coordinate  system  is  given  by  the  equation 

2 2 
ds2 = h1dc2 + h2 dB2 + dn2 

where hl and  h2  are  metric  coefficients. By restricting  attention  to  a  thin 
boundary-layer  region  near  the  surface,  both hl  and h2 can  be  assumed  to  be 
functions  of 5 and B only. 

Continuity 

a a 1 
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5-momentum 

B-momentum 

1 ap a av 
h2 at3 = - - - + G(. z) 

n-momentum 

Energy 

where 
- 

is the  dissipation  function.  (See  ref. 9. ) 

It is convenient to express  derivatives  in  the  E-direction  in  terms of the 
distance s along  a  streamline  as 
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Further,  it  is  assumed  that  the  cross-flow  velocity v and  its  derivatives  are 
small.  With  these  simplifications,  equations (2), ( 3 ) ,  ( S ) ,  (61, and (4 )  are as 
follows : 

Continuity 

s-momentum 

n-momentum 

Energy 

aT as + w 2) = u - 
as  an 

B-momentum 

where is the  streamline  curvature  term  given  by  the  equation 
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Equations (7) t o  (10) are i d e n t i c a l  to t h e  u s u a l  axisymmetric  boundary-layer 
equa t ions   ( r e f .  20) i f  s is i n t e r p r e t e d  as d is tance   a long   an   "equiva len t  
axisymmetric body" and  h2 is i n t e r p r e t e d  as the rad ius  of t h a t  body. T h i s  
set of equations can  be  solved  for  u, w, P, and T through  the  boundary 
layer   a long  a s t reaml ine   us ing   one  of the many methods t h a t  have  been  developed 
for  solving  the  axisymmetric  boundary-layer  equations  (for  example,   refs.  21 
and 2 2 ) .  With u, w, p, and T assumed known from a p rev ious   so lu t ion ,  equa- 
t i o n  (1 l ) becanes a l i nea r   equa t ion   wh ich   can   ea s i ly  be s o l v e d   f o r  v, t h e  
c ros s - f l aw  ve loc i ty  component. I n   t h e   p r e s e n t   a p p l i c a t i o n ,   o n l y   t h e   h e a t   t r a n s -  
fer is of i n t e r e s t ;   t h u s  it is unnecessary to  so lve   t he   c ros s - f low manentum 
equat ion   s ince   in   the   ax isymmetr ic   ana logue  i t  has no e f f e c t  on h e a t i n g  rates. 

Coordinate  System  and  Surface  Geanetry 

The p resen t  paper is conce rned   w i th   ca l cu la t ing   hea t ing  rates on  three- 
d imens iona l   conf igura t ions  - t y p i c a l  of t h e   c o n f i g u r a t i o n  i l lustrated i n   f i g -  
ure 2 - which are symmetric about   the  XZ-plane (p i t ch   p l ane ) .  The fuse lage   o f  
these   vehic les   can  be e a s i l y  described i n   c y l i n d r i c a l   c o o r d i n a t e s   ( r b , @ , x )  
us ing  a funct ion  of   the  form  ( f ig .  3) 

where  the  pole   of   the   coordinate   system is located on  the  X-axis. Hcwever, when 
wings   ex tend   f ran   the   fuse lage ,   equa t ion  (1 3) may becane  mult ivalued.  (See 
f i g .  4 . )  One s o l u t i o n  to  t h i s  problem is  to allow t h e   p o l e  to  be a f u n c t i o n  
of x 

Then, a t  a g iven   x - s t a t ion ,   t he  pole can be located s u c h   t h a t  rb  is a s i n g l e -  
valued  funct ion.  T h i s  new coordinate   system Rbt@#X w i l l  be called a "local 
polar coordina te   sys tem"  in   which   the   vehic le   sur face   can   be   represented  by a 
funct ion  of   the  form 

which is much more general   than  equat ion (13 ) .  I t  should be n o t e d   t h a t   t h e  new 
coordinate   system is general ly   nonorthogonal ;  however, f o r   t h e  special case 
where  ro(x)  = 0, it reduces to the   s t anda rd   cy l ind r i ca l   coo rd ina te   sys t em which 
is orthogonal.  

Vachris  and  Yaeger ( r e f .  23) have  developed a computer  program called QUICK 
which uses  t h e  local polar coordinate   system to d e s c r i b e   v e h i c l e   g e a n e t r i e s .   I n  
t h i s  program, a n a l y t i c   c u r v e s  are pa tched   toge ther  to g ive  a func t iona l   r ep re -  
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s e n t a t i o n  of the vehicle   geometry similar i n  form to equat ion   (15) .  The QUICK 
program is compatible w i t h   t h e  method t h a t  w i l l  be used to o b t a i n   t h e   i n v i s c i d  
flow f i e l d   s o l u t i o n   ( r e f s .   1 7   a n d   1 9 ) .  Thus, it w i l l  be u s e d   e x c l u s i v e l y   i n   t h e  
p r e s e n t   s t u d y  to describe veh ic l e   su r f ace   geane t ry .  

The detailed r e l a t i o n s h i p  between local polar and c y l i n d r i c a l   c o o r d i n a t e s  
on a s u r f a c e  are g iven   i n   append ix  A, bu t   t he   t r ans fo rma t ion   equa t ions  are sum- 
marized  here for mnvenience.  Firs t ,  the   equat ions   descr ib ing   the   t ransforma-  
t i o n   f r a n   c y l i n d r i c a l   c o o r d i n a t e s   r b , @ , x  to  local polar c o o r d i n a t e s  Rb,@,X 
on a s u r f a c e  are 

where 

S imi l a r ly ,   t he   i nve r se   t r ans fo rma t ion   f r an  local ,wlar coord ina te s  Rb,@,X to  
c y l i n d r i c a l   c o o r d i n a t e s  on a s u r f a c e  is expressed as 

where 

Since the  vehicle geometry w i l l  be ob ta ined  from the QUICK program in   t he   func -  
t iona l   form of equa t ion  (1 5 ) ,  t h e  inverse   t ransformat ion   equat ions   should  be 
mor e useful .  
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C a l c u l a t i o n   o f   I n v i s c i d   S u r f a c e   S t r e a m l i n e s  

and Metric C o e f f i c i e n t s  

One of  the m o s t  d i f f i c u l t  steps in  applying  the  axisymmetr ic   analogue is 
c a l c u l a t i n g   t h e   i n v i s c i d   s u r f a c e   s t r e a m l i n e s   a n d   t h e  metric c o e f f i c i e n t  h2 
a long   each   s t r eaml ine .   In   t he   p re sen t   s tudy   t he   i nv i sc id   s t r eaml ine   i n fo rma t ion  
w i l l  be c a l c u l a t e d   u s i n g   t h e  results of a set  of   three-dimensional   inviscid 
f law  f ie ld   p rograms  descr ibed  i n  references  17,   19,   and 24. The  manner i n  which 
t h e   f l o w   f i e l d  is c a l c u l a t e d  is i l l u s t r a t e d  i n  f i g u r e  5. F i r s t ,   t h e   s u b s o n i c /  
t ransonic   f low  over   the  nose is computed  using a time dependent  method BLUNT 
similar to t h a t   d e s c r i b e d   i n   r e f e r e n c e  24. F r a n   t h i s   s o l u t i o n   a n  i n i t i a l  d a t a  
plane ( I D P )  normal to the  X-axis is ob ta ined ,   i n  a region  where  the  f low is 
e n t i r e l y   s u p e r s o n i c .  Then, a f in i te -d i f fe rence   marching   technique  STEIN 
( refs .   17  and  19)  is used to  cont inue   the   so lu t ion   downst ream  in   the   supersonic  
r eg ion  step by step i n   p l a n e s  normal to t h e  X-axis.   These  solutions  provide 
t h e   i n v i s c i d   f l a w  f i e ld  da ta   ove r   t he   en t i r e   veh ic l e   wh ich  w i l l  be used to  cal- 
culate the   s t r eaml ines   and  metric c o e f f i c i e n t s .  

N o s e  region. - In   t he   nose   r eg ion   o f  a b lun t  body, t h e   s u r f a c e   s t r e a m l i n e s  
o r i g i n a t e  a t  t h e   s t a g n a t i o n   p o i n t  as i l l u s t r a t e d   i n   f i g u r e  6. L e t t i n g  6 be 
t h e   c o o r d i n a t e   i n   t h e   s t r e a m l i n e   d i r e c t i o n  and f3 t he   coo rd ina te  i n  a d i r e c t i o n  
normal to  t h e   s t r e a m l i n e  and  tangent to  t h e   s u r f a c e ,   t h e   d i f f e r e n t i a l s  of arc 
l e n g t h  are 

and 

r e s p e c t i v e l y .  The metric c o e f f i c i e n t  h2 gives  a measure of  the  divergence or 
convergence  of   the  s t reamlines   on  the  surface  and is t h e   " e q u i v a l e n t   r a d i u s "  
t h a t  m u s t  be used in  the  axisymmetric  boundary-layer  equations.  

The  nose  geometry of most nonab la t ing   b lun t   r een t ry   veh ic l e s  is smooth; 
thus,   the pressure d i s t r i b u t i o n   i n   t h e   n o s e   r e g i o n   o f   t h e s e   v e h i c l e s  is also 
r e l a t i v e l y  smooth.  Because  of t h i s ,   t h e  pressures can be canputed by BLUNT and 
used as i n p u t s  to the  mmputer   program  descr ibed  in   reference  16 to  calculate 
the   s t r eaml ines   and  metric c o e f f i c i e n t s   f r a n   t h e   s t a g n a t i o n   p o i n t  to t h e   s t a t i o n  
w h e r e   t h e   i n i t i a l  data p l a n e   i n t e r s e c t s   t h e  body sur face .   (See   f ig .  6.)  I n  
p r i n c i p l e ,   t h e  same technique  could be used to c o n t i n u e   t h e   s t r e a m l i n e   s o l u t i o n s  
downstream;  but it cou ld   l ead  to  l a r g e   i n a c c u r a c i e s   s i n c e   t h e  pressure d i s t r i -  
bution  can  change  radically  downstream of the  nose  on  general   three-dimensional  
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conf igu ra t ions .  Thus,  downstream of the  IDP,  a new technique for o b t a i n i n g  
s t r e a m l i n e   s o l u t i o n s  has been  developed,  and it w i l l  be described i n  de t a i l  i n  
the   nex t   s ec t ion .  

Downstream supersonic   reg ion . -   DeJarne t te   ( re f .   16)   p resents   the   fo l lowing  
two equations  which  can be used to  calculate t h e   s t r e a m l i n e   p o s i t i o n :  

and  the metric m e f f i c i e n t  h2 

($)x = ( r b  'Os '' e )h2 

The ang le s  6+ and r are t h e  body-geometry a n g l e s   d e f i n e d   i n   r e f e r e n c e  15. 
(See also f i g .  7 . )  They are given by t h e   e q u a t i o n s  

and 

0 

The ang le  8 is related to  t h e   v e l o c i t y   d i r e c t i o n   o n   t h e   s u r f a c e   ( f i g .  8) and 
can be obta ined   f rom  the   inv isc id  f l w   f i e l d   s o l u t i o n .  

The d i s t ance   a long  a s t reamline  can be c a l c u l a t e d   f r a n   t h e   f o l l o w i n g   d i f -  
f e r e n t i a l   e q u a t i o n :  
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Since B is cons tan t  on a g iven   s t reaml ine ,   equa t ion  (19) can be i n t e -  
gra ted   a long  a s t r e a m l i n e  to de te rmine   t he   va r i a t ion   o f   t he   cy l ind r i ca l  
a n g l e  4 with respect to x. S i m i l a r l y ,   e q u a t i o n  (23) can be i n t e g r a t e d  to 
g i v e   t h e   s t r e a m l i n e   l e n g t h .  To o b t a i n   t h e  metric c o e f f i c i e n t   a l o n g  a stream- 
l ine ,   t he   p r imary   s t r eaml ine  - the   s t reaml ine   a long   which   hea t ing  rates are 
c a l c u l a t e d  - and an ad jacen t   s t r eaml ine   ( s epa ra t ed   f r an   t he   p r imary   s t r eaml ine  
by AB) are computed  simultaneously. Then, a t  a . g i v e n   x - s t a t i o n   t h e  metric 
c o e f f i c i e n t  h2 is computed f r a n   e q u a t i o n  (20) a f t e r   f i r s t   a p p r o x i m a t i n g   t h e  
d e r i v a t i v e  (a@/aB), numerical ly   using  one-sided  differences.   In   reference 16 
numerical  experiments were performed  using  several   types   of   dif ference  schemes 
to  approximate (a@/aB)x and  the  preceding  procedure was found to be s u f f i -  
c i e n t l y  accurate. 

The ang le s  64 and r given by equa t ions  (21) and (22) are d e f i n e d   i n  
terms of c y l i n d r i c a l   c o o r d i n a t e s  4 and x. I n  order to a p p l y   t h e s e   e q u a t i o n s  
to gene ra l  wing-body c o n f i g u r a t i o n s ,   t h e y  m u s t  be t ransforn-d to local polar 
coord ina te s .   Th i s   t r ans fo rma t ion   l eads  to t h e   f o l l o w i n g  results (see appen- 
d i x  A f o r  details): 

t an  64 = 

and 

where 

( 1  + i 2 ) (  82, cos2  @) 
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The d e r i v a t i v e s  are obtained  f rom  the  geometry  descr ipt ion 

program QUICK. 

Simi la r ly ,   equa t ion  (19)  g i v e s   t h e   l o c a t i o n   o f   t h e   s t r e a m l i n e   i n  terms of 
t h e   c y l i n d r i c a l   a n g l e  4 .  For wing-body c o n f i g u r a t i o n s ,   t h e   a n g l e  4 may n o t  
describe a unique  point  on  the body cross sec t ion .   (See   f i g .  4. )  To a v o i d   t h i s  
problem, equa t ion  (1 9) can be r e w r i t t e n   i n  terms of t h e  local polar ang le  @ 
in   the   fo l lowing   form (see appendix A f o r  de ta i l s )  : 

where 

1 4  



and  where (2) and (3 are  given  by  equations (19) and  (26) , respec- 
ax B X 

tively,  and rg)x, fa @, and - are  calculated  in  the  geometry  descrip- 
tion  program  QUICK. 

dr 0 

dX 

After  obtaining  the  angle 8, which is related  to  the  velocity  direction 
on  the  surface,  from  the  inviscid  solution  (appendix B), equation (30) can be 
integrated  to  obtain  the  streamline  location  on  the  body  surface  as  a  function 
of @ and x. This is  a  general  equation  and  can  be  applied  to  any  configu- 
ration  where  the  pole  can be located to give Rb as  a  single-valued  function 
of @ and x. (See  fig. 4 . )  For  the  special  case  where ro = 0, the  local 
polar  coordinate  system  reduces  to  a  cylindrical  coordinate  system,  and  equa- 
tion (30) reduces  to  the  form 

as  would be expected. 

The  metric  coefficient  h2  and  distance  along  a  streamline s are 
obtained  by  solving  equations  (20)  and (231, respectively,  as  previously 
discussed. 

Calculation of Heating  Rates 

Approximate  three-dimensional  heating  rates  along  surface  streamlines  can 
be  calculated  through  the  axisymmetric  analogue  using  any  available  axisymmetric 
boundary-layer  solution.  Although  heating  rates  are  usually  calculated  from  a 
solution  of  the  complete  axisymmetric  boundary-layer  equations  (eqs. (7 )  to 
( l o ) ) ,  this is unnecessary  because  very  accurate  results  can  be  obtained  more 
easily  from  approximate  heat-transfer  relations  similar  to  those  presented  in 
reference  25.  Following  the nmenclature of  reference  25,  the  expression  for 
the  heating  rate  to  the  surface is given by  the  following  equation  (see  appen- 
dix C for  details): 
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where the t rans fo rmed   su r face   d i s t ance  5 is given by 
- 

The parameter 6;  is t h e   d e r i v a t i v e  of the  nondimensional   enthalpy profile 

normal to t h e  wall and is approximated by t h e   e x p r e s s i o n  (see 

appendix C )  

W 

where   t he   ve loc i ty   g rad ien t  parameter 8,  the  nondimensional adiabatic wall 
e n t h a l m  caw, and the   r ecove ry   f ac to r  RF are given by t h e   f o l l o w i n g  . 

expressions:  

- 

caw = RF + ( I  - RF)te 

and 

The  approximate  expression for Cb (eq. (36))  has  been  found to  p r e d i c t   v a l u e s  
t h a t   a g r e e   w i t h   e x a c t  similar s o l u t i o n s  (tabulated i n   r e f .  26) to w i t h i n  
+4  percen t   fo r   t he   fo l lowing   r ange  of condi t ions:  

1 6  



0.2 s te 5 1.0 

0.0076 6 5, 5 0.75 

0 5 B 5 3.5 
- 

Boundary-layer  edge  properties  for  the  heat-transfer  calculation  are 
obtained  by  assuming  that  the  flow  expands  isentropically  along  an  inviscid sur- 
face  streamline  from  the  stagnation  pressure  to  the  local  pressure  obtained  from 
the  inviscid  solution.  Thus,  the  properties  at  the  edge  of  the  boundary  layer 
(which  are  assumed  equal  to  the  inviscid  wall  conditions)  can  be  expressed €or a 
perfect  gas  as  follows: 

and 

The  wall  temperature  is  assumed  to  be  known;  thus,  the  nondimensional 
enthalpy  ratio  at  the  wall  can  be  calculated  from  the  equation 

The  viscosity  ratio Pw/lJe is computed  from  the  Sutherland  viscosity  formula 
(ref.  27) 
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where S is a  dimensional  constant  defined  in  the  present  work  as 

S = 110.33 K 

RESULTS AND DISCUSSION 

In the  sections  that  follow,  the  limitations  and  range  of  applicability of 
the  method  will  be  discussed;  also,  a  comparison  of  calculated  heating  rates 
with  experimental  measurements  for  a  spherically  blunted 15O half-angle  cone,  a 
spherically  blunted 80° sweep  slab  delta  wing,  and  a  Space  Shuttle  Orbiter  type 
configuration  will be presented. 

Limitations  and  Range  of  Applicability 

The  basic  assumption  of  the  axisymmetric  analogue  is  that  the  cross  flow  in 
the  boundary  layer is small  (ref. 9 ) .  It has  been  shown  that  the  cross  flow  in 
the  boundary  layer  will  be  small  when  the  streamline  curvature on the  surface  is 
small  (ref. 10)  or when  the  wall  is  highly  cooled  (ref. 11 ) . The  first  condi- 
tion  is  rather  restrictive  since  in  general  it  will  be  satisfied  only  for  smooth 
bodies  (that  is,  bodies  with  only  small  changes  in  curvature)  at  small  angle  of 
attack.  The  second  condition is less  restrictive  because  for  many  applications 
the  wall  temperature is only  a  small  fraction of the  adiabatic  wall  temperature. 
However,  these  conditions  are  both  qualitative  and  it is necessary  to  compare 
calculated  heating  rates  with  experimental  data  to  validate  the  theory. 

In  the  present  paper,  it is assumed  that  the  Reynolds  number  is  large 
enough  for  boundary-layer  concepts  to  apply  but  not  large  enough  to  cause  tran- 
sition  to  turbulent  flow.  The  first  of  these  assumptions  is  necessary  since 
the  concept  of  the  axisymmetric  analogue  is  based on boundary-layer  theory.  The 
second  assumption  is  not  necessary  since  Cooke  and  Hall  (ref. 13) have  shown 
that  the  axisymmetric  analogue  can  be  extended  to  turbulent  flows.  However, 
turbulent  flows  are  not  considered  in  the  present  paper. 

Further,  it  has  been  assumed  that  the  boundary  layer  follows  inviscid sur- 
face  streamline  paths  and  that  the  entropy of the  fluid  at  the  edge  of  the 
boundary  layer is constant.  This is equivalent  to  assuming  that  the  boundary 
layer is very  thin  and  that  all of the  fluid  entering  the  boundary  layer  has 
passed  through  the  normal  portion  of  the  bow  shock  wave.  This  is  a  good  assump- 
tion  in  the  nose  region  and  for  some  distance  downstream  of  the  nose  for  high 
Reynolds  number  laminar  flow. 

In  the  region  far  downstream  of  the  nose,  the  boundary-layer  thickness is 
no  longer  negligible,  and  the  entropy  of  the  fluid  entering  the  boundary  layer 
is  not  constant.  In  this  region,  it  becomes  increasingly  important to account 
for  boundary-layer  growth  in  calculating  the  metric  coefficient  ha  and  vari- 
able  entropy  in  calculating  boundary-layer  edge  conditions,  both  of  which  can 
have  a  strong  influence  on  heating  rates.  These  effects  have  not  been  consid- 
ered  in  the  present  paper  because  they  would  unnecessarily  complicate  the  devel- 
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opnent  of  the  method  and are considered  of  mall  impor tance   for   the   exper imenta l  
canparisons  which  fol low.   These  effects   can be i n c o r p o r a t e d   i n   t h e   h e a t i n g  cal- 
c u l a t i o n s  a t  sane f u t u r e  time. 

Canparisons  With  Experimental Data 

Sphe r i ca l ly   b lun ted  15O ha l f - ang le  axe . -  Ca lcu la t ed   hea t ing  rates are c o m -  
pared  with  experimental   measurements   f ran  reference  28  on a sphe r i ca l ly   b lun ted  
15O ha l f - ang le  ame a t  angles   of  attack of Oo, loo,  and 20°. The experimental  
tests ( r e f .   28 )  were performed i n  a i r  (y = 1 . 4 )  a t  a free-stream Mach number of 
10.6  and a free-s t ream unit -Reynolds number of  1.31 x 1 O 6  per meter. The ra t io  
of wall to boundary-layer   edge  s tagnat ion  enthalpy Sw for t h e s e  tests was 
0.27. The P r a n d t l  number was assuned t o  be 0.72. 

The  c1 = Oo case is of p a r t i c u l a r   i n t e r e s t  because t h e   f l o w  is axisymmet- 
r i c  and results ob ta ined  by t he   p re sen t   t heo ry   can  be compared wi th   o ther   theo-  
retical  resul ts .  F i r s t ,  it is well-known t h a t   t h e  metric coe f f i c i en t   wh ich  
descr ibes   the   d ivergence  or convergence  of  streamlines  in  axisymmetric  boundary- 
l a y e r   f l o w s  is equa l  t o  t h e  body c r o s s - s e c t i o n a l   r a d i u s   ( r e f s .  20  and 2 9 ) .  To  
c h e c k   t h i s  resul t ,  the metric coe f f i c i en t   ob ta ined   f rom  the   p re sen t   t heo ry   fo r  
t h i s  case is canpared  with  the body c r o s s - s e c t i o n a l   r a d i u s   i n   f i g u r e   9 .  The 
results for   the   nose   reg ion  (x/Rn 5 2) are  p r e s e n t e d   i n   f i g u r e  9(a) and  the 
downstream  region (x/Rn 2 2 )   i n   f i g u r e  9 (b)  . As would be expec ted   for   any   ax i -  
symmetric body a t  c1 = Oo, t h e   c a l c u l a t e d  metric c o e f f i c i e n t  h2 ag rees  almost 
e x a c t l y   w i t h   t h e  body r ad ius   rb .  

The a x i a l   d i s t r i b u t i o n   o f   h e a t - t r a n s f e r  ra te  f o r  c1 = Oo is p r e s e n t e d   i n  
f i g u r e   1 0 .  The p r e s e n t   t h e o r y  is canpared  with  experimental   data   f rom  refer-  
erence 28 and  the results of a nonsimilar  axisymmetric  boundary  layer  solution 
canputed by t h e  method  of  reference  21.   Both  calculated results are i n  very 
good  agreement  with  the  experimental  data. The approximate   hea t - t ransfer  
relations used i n   t h e   p r e s e n t   t h e o r y  (eqs. (34)  to  ( 3 9 ) )   y i e l d  resu l t s  canpara- 
b l e  t o  those   ob ta ined   us ing   the   d i f fe ren t ia l   boundary- layer   so lu t ion   procedure  
( r e f .   2 1 ) .  

The ax ia l   hea t - t r ans f  er d i s t r i b u t i o n s   a l o n g  t w o  mer id iona l   p l anes  - t he  
windward  symmetry plane (a = -goo) and t h e   s i d e   m e r i d i o n a l   p l a n e  (a = Oo) - are 
p r e s e n t e d   i n   f i g u r e  11 f o r  an angle   of  at tack of loo .  Experimental   data  from 
re fe rence  28 f o r  two d i f f e r e n t   n o s e   b l u n t n e s s  are p resen ted   fo r   canpa r i son .  The 
c a l c u l a t e d   h e a t i n g  rates are i n  good  agreement  with  the  experimental  data a long  
each   mer id iona l   p lane   a l though  there  is cons ide rab le  scatter i n   t h e   e x p e r i m e n t a l  
measurements i n   t h e  windward  symmetry plane (0 = -goo) for   va lues   o f  x/Rn 
grea te r   than   about   12 .  

The c i r c u m f e r e n t i a l   h e a t i n g   d i s t r i b u t i o n s   f o r  c1 = 1 Oo are p r e s e n t e d   i n  
f i g u r e   1 2  a t  two a x i a l   s t a t i o n s :  x/Rn = 3.1  and x/Rn = 1 2 . 0 .  The a b s c i s s a  
for   each part of t h e   f i g u r e   b e g i n s   i n   t h e  windward  symmetry p l ane  (a = -goo) 
and continues  around to  the  leeward  symmetry  plane (0 = goo).   Heating ra tes  
c a l c u l a t e d  by the   present   method  agree well wi th   the   exper imenta l   da ta   a round 
the cone a t  e a c h   a x i a l   s t a t i o n .  
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The a x i a l   h e a t i n g - r a t e   d i s t r i b u t i o n s  a t  a = 20° are p r e s e n t e d   i n   f i g -  
ure  13, a n d   t h e   c i r c u m f e r e n t i a l   h e a t i n g - r a t e   d i s t r i b u t i o n s  for t h i s   a n g l e  of 
attack are p r e s e n t e d   i n   f i g u r e   1 4 .  The c a l c u l a t e d   h e a t i n g  rates are i n  good 
agreement   with  the  experimental  data in   each   i n s t ance .   These  good canpa r i sons  
are very  encouraging because t h e   i n v i s c i d   s u r f a c e   s t r e a m l i n e s   f o r   t h i s   a n g l e  
of attack (see f i g .  1 5 )  e x h i b i t '   l a r g e   d i v e r g e n c e   o v e r  much of t h e  lower surface 
and side o f   t h e   a m e .   T h i s   s u g g e s t s   t h a t   t h e  small cross-flow analogy  can   y ie ld  
r e a s o n a b l y   a c c u r a t e   h e a t - t r a n s f e r   r e s u l t s   e v e n   i n   r e g i o n s   o f   r e l a t i v e l y   l a r g e  
s t reaml ine   d ivergence   for   va lues   o f  G w  as l a r g e  as 0.27.. 

I n  a l l  of t h e   t h e o r e t i c a l  results p r e s e n t e d   p r e v i o u s l y   t h e  pole of t h e ,  
local polar coordinate  system  has  been  coincident '   with  the body a x i s ,  Thus, 
ro (x) is equal to zero ;   and   s ince   the   geane t ry  is axisymnetric, a R d a @  is 
also equa l  to z e r o .   T h i s   g r e a t l y  simplifies t h e  problem s i n c e  many of   the  terms 
drop   ou t   o f   the   equat ions   and  may have   the   e f fec t   o f   masking  errors i n  t h e  pro- 
gram t h a t  would show up later f o r  more complicated geometr ies .   Thus,   the   invis-  
c i d  f l o w f i e l d  a n d   h e a t - t r a n s f e r   c a l c u l a t i o n s  were repeated u s i n g   t h e   s h i f t e d  
p o l e   c o n f i g u r a t i o n   d e f i n e d  by the   fo l lowing   expres s ions :  

For 0 5 x 5 1 .5 ,  

For 1 . 5  6 x 6 1 5 . 0 ,  

r o ( x )  = -0 .13991 (x  - 1 . 5 )  

which is illustrated i n   f i g u r e   1 6 .  The c a l c u l a t i o n s  were performed for CL = Oo 
and loo, and t h e   r e s u l t s  are compared w i t h - p r e v i o u s   h e a t - t r a n s f e r   c a l c u l a t i o n s  
i n   f i g u r e s   1 7  to 1 9 .  The h e a t i n g  rates ob ta ined   u s ing  t h e  sh i f ted-pole   conf ig-  
u r a t i o n   a g r e e   c l o s e l y   w i t h   t h o s e   o b t a i n e d   p r e v i o u s l y  when t h e  pole was a l i g n e d  
wi th   t he  body a x i s  ( i . e .  , r o ( x )  = 0 ) .  W i t h   t h e s e   r e s u l t s ,   h e a t i n g  rates on  
more complicated body geometries  can be computed w i t h  added confidence.  

S p h e r i c a l l x   b l u n t e d  80° sweep slab delta wing.-  Next, calculated heat-  
t r a n s f e r   c o e f f i c i e n t s  are compared with  experimental  measurements,  from refer- 
ence 30, on a s p h e r i c a l l y   b l u n t e d  80° sweep slab del ta  wing ( f i g .  20) a t  a n g l e s  
of attack of Oo, loo,  and 20°. The experimental  tests i n   r e f e r e n c e  30 were per- 
formed i n  air (y = 1 . 4 )  a t  a free-s t ream Mach number of 9 . 6  and a free-stream 
uni t   Reynolds  number of 3.94  x 1 O 6  per meter. The ra t io  of wall to boundary- 
l aye r   edge   s t agna t ion   en tha lpy   3w  in  t h e  tests was 0 . 3 3 ,  and   t he   P rand t l  num- 
ber was assumed to be 0.72. 

The a x i a l   d i s t r i b u t i o n  of h e a t - t r a n s f e r   c o e f f i c i e n t s  for = Oo is pre- 
s e n t e d   i n   f i g u r e  21 . The h e a t - t r a n s f e r   c o e f f i c i e n t s  calculated by t h e   p r e s e n t  
t heo ry  are seen  to be i n  good  agreement  with  the  experimental  data.  
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The c i r c u m f e r e n t i a l   d i s t r i b u t i o n s   o f   h e a t - t r a n s f e r   c o e f f i c i e n t   f o r  Q = Oo 
are p r e s e n t e d   i n   f i g u r e  22 a t  t h r e e   s t a t i o n s  (Z/Rn = 4, 8, and  12)  measured  from 
the  beginning of the  wing l ead ing   edge .   These   d i s t r ibu t ions  were obta ined   a long  
c ross - sec t iona l   cu t s   no rma l  to t h e  wing leading  edge ( i . e . ,  t h e   d a s h e d   l i n e s  i n  
f i g u r e   2 0 ) .  Even a t  o! = Oo, t he   hea t ing   abou t  a d e l t a  wing is not  axisymmetric 
because  of   the  geanetry;  bu t  it is symnetric about t h e  wing leading  edge 
(@ = Oo). A t  t he  upstream stat ion,  Z/Rn = 4,  t he   p re sen t   t heo ry   unde rp red ic t s  
t he   expe r imen ta l   da t a   s l i gh t ly   a round   t he   l ead ing   edge ;   bu t  a t  t h e  t w o  down- 
stream s t a t i o n s ,  Z / R n  = 8 and  12,   the   theory is i n   v e r y  good  agreement  with  the 
d a t a .  

The a x i a l   d i s t r i b u t i o n  of heat- t ransf  er c o e f f i c i e n t  a t  a = 1 Oo is pre- 
s e n t e d  i n  f i g u r e  23. A s  a t  t h e  lower angle   of  attack, the   hea t - t r ans fe r   coe f -  
f i c i e n t s   c a l c u l a t e d  by t h e   p r e s e n t   t h e o r y  are i n  very   good  agrement   wi th   the  
expe r imen ta l   da t a .   C i r cumfe ren t i a l   d i s t r ibu t ions  a t  t h i s   a n g l e  of at tack are 
p r e s e n t e d   i n   f i g u r e  24. A t  each s ta t ion ,  t h e   h e a t i n g   i n c r e a s e s  i n  a d i r e c t i o n  
away from  the windward  symmetry  plane (@ = -goo) u n t i l  it reaches a peak 
s l i g h t l y  ahead  of  the  wing  leading  edge (a .c Oo) and   t hen   dec reases   r ap id ly  
a round  the   l ead ing   edge   on   the  lee s i d e .  The h e a t - t r a n s f e r   c a l c u l a t i o n s   d o   n o t  
extend a l l  the way around to the  leeward  symmetry  plane (a = 90°) because a 
cross-flow  shock wave occurs i n   t h e   i n v i s c i d   f l o w   f i e l d  s o l u t i o n  on   t he  lee s i d e  
of the body,  and the  boundary-layer  equations  cannot be used to a c c u r a t e l y  com-  
p u t e   t h e   h e a t i n g   i n   t h i s   r e g i o n .   H e a t - t r a n s f e r   c o e f f i c i e n t s   p r e d i c t e d  by t h e  
p re sen t   t heo ry  are g e n e r a l l y   i n  good  agreement   with  the  experimental   data .  The 
most no tab le   excep t ion   occu r s   nea r   peak   hea t ing   fo r  Z/Rn = 1 2 ;  however, t h e  
e x p e r i m e n t a l   d a t a   p o i n t   i n   t h i s   r e g i o n  takes a n   i n e x p l i c a b l e   d i p   a n d  may be i n  
error.  

The a x i a l   d i s t r i b u t i o n  o f   h e a t - t r a n s f e r   c o e f f i c i e n t s  a t  o! = 20° is pre- 
s e n t e d   i n   f i g u r e  25. I t  can   be   no ted   t ha t   t he   p re sen t   t heo ry  is i n  good  agree- 
ment wi th   the   exper imenta l   da ta .  The c i r c u m f e r e n t i a l   d i s t r i b u t i o n s  a t  t h i s  
angle   of  at tack are p r e s e n t e d   i n   f i g u r e  26 .  The hea t ing  a t  t h i s   h ighe r   ang le   o f  
attack i s  q u a l i t a t i v e l y  similar to  the   hea t ing  a t  CC = l oo ,  excep t   t he   l eve l  on 
t h e  windward s i d e  and  leading-edge  region is much higher.   Again,  it is found 
t h a t   t h e   p r e s e n t   t h e o r y  is i n  good overal l   agreement   with  the  experimental  data.  

The i n v i s c i d   s u r f a c e   s t r e a m l i n e s   f o r   t h e   d e l t a  wing a t  CC = Oo are pre- 
s e n t e d   i n   f i g u r e  27.  There is one   s t r eaml ine   t ha t  lies i n   t h e  wing  leading-edge 
symnetry  plane  ( f ig .  27 ( a ) )  w h i c h   d i v i d e s   t h e   s t r e a m l i n e   p a t t e r n   i n t o  a symmet- 
r i ca l  upper  and lower part. Near t h e  bottom symmetry p l a n e   ( f i g .  27 ( b )  ) where 
t h e   h e a t i n g  is l o w ,  t he   s t r eaml ines   have   ve ry  l i t t l e  c u r v a t u r e .  However, on   t he  
wing l ead ing   edge   ( f ig .   27 (a ) )   where   t he   hea t ing  is r e l a t i v e l y   h i g h ,   t h e  stream- 
l i n e s   d i v e r g e   v e r y   r a p i d l y .  

The overa l l   agreement  between the  predicted  and  measured  heat ing rates on 
t h e   b l u n t - s l a b   d e l t a  wing is very  good.  This is t h e   f i r s t  time t h a t   t h r e e -  
dimensional   heat ing rates on a b l u n t - s l a b   d e l t a  wing  have  been  calculated suc- 
c e s s f   u l l y .   T h i s  is ve ry   encourag ing   because   t h i s   con f igu ra t ion  is not  axisym- 
metric and,   a l though  analyt ic ,   has  many f e a t u r e s   t h a t  are similar to  more 
c a n p l i c a t e d   v e h i c l e s .  
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Space S h u t t l e   O q b i t e r  type configuratio_n_.-  Finally,  calculated heat-  
t r a n s f e r   c o e f f i c i e n t s  on a S p a c e   S h u t t l e   O r b i t e r   t y p e   c o n f i g u r a t i o n  are canpared 
with  experimental   measurements f rm re fe rence  31 a t  ang le s  of a t t a c k  of 20° 
and 25O. The experimental  tests i n   r e f e r e n c e  31 were performed  in  a i r  ( y  = 1.4) 
a t  a free-stream Mach number of 7.9 and a f ree-stream unit   Reynolds number of 
1.64 x 1 O6 per  meter. The r a t io  of wall to  boundary-layer  edge  stagnation 
en tha lpy  ?& f o r   t h e  tests was 0.31 , and t h e   P r a n d t l  number was assumed to  be 
0.72. The model used i n   t h e   e x p e r i m e n t a l  tests was 0.01 75-scale  model of t h e  
f u l l - s c a l e   v e h i c l e  shown i n   f i g u r e  28. 

In   cons t ruc t ing   t he   ma themat i ca l   geane t ry  model f r a n   t h e  QUICK geane t ry  
program to u s e  i n   t h e   i n v i s c i d   f l a w   f i e l d   c a l c u l a t i o n s ,   t h e  canopy was f a i r e d  
snooth as shown  by t h e   d a s h e d   l i n e   i n   f i g u r e  28, and t h e   v e r t i c a l   t a i l  and 
r e a c t i o n  j e t  c o n t r o l  pod on   the  rear of t he   veh ic l e  were o m i t t e d .   D i f f i c u l t i e s  
were encountered when computing  the  lee-s ide flow f i e l d   w i t h   t h e  "realistic" 
cross-sect ional   geometry;   thus  the lee-side cross s e c t i o n  was smoothed o u t  using 
an e l l i p t i c a l  segment.  (See  dashed l i n e   i n   s e c t i o n  A-A of f i g .  28.) The lawer 
side of  the  vehicle  geometry was accurately  modeled so tha t   t he   f l aw   on   t he  
windward sur face   could  be accura te ly   canputed .   The   modi f ica t ions  t o  t h e  lee- 
side geometry  had no e f f e c t  on the  windward-side  f low  calculations because i n  
a l l  cases the   c ross - f law  ve loc i ty   went   supersonic   before   the   geane t ry   modi f ica-  
t i o n s  were encountered. The i n v i s c i d   s o l u t i o n s  were computed  over  the  forward 
60 percen t  of t he   veh ic l e   l eng th ,  back t o  where   the   wing   s ta r ted  t o  f l a r e  o u t  
r ap id ly .   (See   dashed   l i ne   i n   t op  view of f i g .  28.) A t  t h i s   p i n t ,   t h e   a x i a l  
v e l o c i t y  a t  t h e  wing t i p  became subson ic  and t h e   s o l u t i o n  c o u l d  not   proceed  far-  
t h e r  downstream.  (See  discussion  of   l imitat ions of supersonic   marching  tech-  
n i q u e s   i n   r e f s .  1 7  and 19.) Thus, t h e   h e a t i n g  rates could  only be canputed  on 
approximately  the  forward 60 p e r c e n t  of the  windward side. 

The a x i a l   d i s t r i b u t i o n  of hea t - t r ans fe r   coe f f i c i en t   a long   t he  windward sym- 
metry  plane a t  o! = 20° is p r e s e n t e d   i n   f i g u r e  29. A s  can be noted,  the  heat-  
t r a n s f e r   c o e f f i c i e n t s   c a l c u l a t e d  by t h e   p r e s e n t   t h e o r y  are in   ve ry  good  agree- 
ment with  the  experimental   data .  

Lateral d i s t r i b u t i o n s  of h e a t - t r a n s f e r   c o e f f i c i e n t  across t h e  lower s u r f a c e  
of the model a t  o! = 20° are p r e s e n t e d   i n   . f i g u r e  30 f o r  two a x i a l   s t a t i o n s :  
x/L = 0.4 and x/L = 0.5. The c a l c u l a t e d   h e a t - t r a n s f e r   c o e f f i c i e n t s  are i n   v e r y  
good  agreement   with  the  few  experimental   data   points   that  are ava i l ab le .  
Although no d a t a  are ava i l ab le   nea r   peak   hea t ing ,   t he   exce l l en t  results noted 
p r e v i o u s l y  for t h e   d e l t a  wing i n   t h i s   r e g i o n   l e n d   o o n f i d e n c e  to  the   p re sen t  
p red ic t ions .  

For o! = 25O, a x i a l   d i s t r i b u t i o n s  of h e a t - t r a n s f e r   c o e f f i c i e n t  are pre- 
s e n t e d   i n   f i g u r e  31, and la te ra l  d i s t r i b u t i o n s  are p r e s e n t e d   i n   f i g u r e  32. A s  
a t  the lower angle   o f  attack, the   p resent   theory  is i n   v e r y  good  agreement  with 
the   exper imenta l   da ta .  

The i n v i s c i d   s u r f a c e   s t r e a m l i n e s  on t h e  windward surface  of  the  Space  Shut- 
t l e  Orbiter type   conf igu ra t ion  are p r e s e n t e d   i n   f i g u r e  33. I t  should be noted 
t h a t  near the  symmetry  plane  where  the  heat ing rates are r e l a t i v e l y  law t h e  
s t reaml ines   have  l i t t l e  curvature;   whereas  a t  t h e  outer edge of t h e  body  where 
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the hea t ing  rates inc rease   sha rp ly ,   t he   s t r eaml ine  curvature also i n c r e a s e s  
r a p i d l y  - as would be expected. 

Thus, on the windward sur face   o f  a Space   Shu t t l e   Orb i t e r  type conf igu ra t ion  
where t h e   i n v i s c i d  flow f i e l d  can be a c c u r a t e l y  computed the   p resent   theory   has  
been shown to p r e d i c t   h e a t i n g  rates t h a t  are i n   v e r y  good overal l   agreement   with 
exper imenta l   da ta  a t  moderately  high  angles  of attack. 

From the   p resent   s tudy ,  it appears   tha t   accura te   th ree-d imens iona l   hea t ing  
rates can be computed  on most r eg ions  of a vehicle  where  boundary-layer  concepts 
a p p l y   i f  rw is not  too l a r g e  (i.e., less than  approximately 0.4) and  an  accu- 
rate i n v i s c i d   f l o w   f i e l d   s o l u t i o n  can be computed.  The  range  of sw might  be 
extended  even  higher  through  future  comparisons  with  other  experimental   data.  
Fran   the   exper ience   ga ined   in   the   p resent   s tudy  i t  is e s t i m a t e d   t h a t   t h e   h e a t i n g  
over a "complete" veh ic l e   can  be o b t a i n e d   i n  a few  minutes  computing time on a 
Con t ro l  Data CYBER 175 (or e q u i v a l e n t )  computer o n c e   t h e   i n v i s c i d  flow f i e l d   h a s  
been  obtained.  Consequently,   the  present  theory  should  prove  very u s e f u l  i n  
s tudying  the  heat ing  on  advanced  Earth  entry  vehicles .  

CONCLUDING REMARKS 

A t h e o r e t i c a l  method  has  been  developed  for  computing  approximate  laminar 
hea t ing  rates on three-dimensional   configurat ions a t  ang le   o f  attack. The 
method is based  on  the  axisymmetric  analogue  which is used to reduce  the 
three-dimensional  boundary-layer  equations  along  streamlines to an equ iva len t  
axisymmetric form by us ing   t he  metric coe f f i c i en t   wh ich   desc r ibes   s t r eaml ine  
divergence (or convergence) . The method  has  been  coupled  with a three-  
d imens iona l   i nv i sc id  flow f i e l d  program for  computing surface s t r eaml ine   pa ths ,  
metric c o e f f i c i e n t s ,  and  boundary-layer  edge  conditions.  Using  this  method, 
accurate laminar   heat ing rates can be computed f o r  a wide  range of three-  
d imens iona l   conf igura t ions  a t  moderately  large  angles   of  attack. T h i s   w n c l u -  
s i o n  is supported by  good comparisons  with  experimental   data  on a s p h e r i c a l l y  
blunted 15O half-angle   cone,  a s p h e r i c a l l y   b l u n t e d  80° sweep s l a b   d e l t a  wing, 
and a Space   Shu t t l e   Orb i t e r   t ype   conf igu ra t ion  a t  ang le s  of attack up to  25O. 
Canpu ta t ions   p roceed   ve ry   r ap id ly   w i th   t he   hea t ing   ca l cu la t ions   fo r  a complete 
c o n f i g u r a t i o n   r e q u i r i n g   o n l y  a few  minutes of canput ing time. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
J u l y  15, 1980 
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APPENDIX A 

TRANSFORMATION FROM CYLINDRICAL  COORDINATES 

TO LOCAL POLAR COORDINATES 

The  equations  relating  local polar coordinates and cylindrical  coordinates 
are  given by equations (1 7a) to (17d) 

x = x  

where 

A = tan @ + ro  (X)/(Rb cos 9) 
- 

(A4 1 

The  transformation  operators for transforming  derivatives  from  cylindrical 
coordinates  on  a  surface (@,x) to  local polar coordinates on a  surface (@,x) 
are 

Now since 

= O 

and 
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equations (a) and (A6) can be written  as 

and 

Similarly, the reverse  transformation  operators  are 

Now solving  equation (A91 for  the  following  result is obtained: 

Canparison of equations (A7) and ( A l l  ) shows tha t  
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Similarly,  solving equation (A101 for and  using equation ( A l l )  to 

replace (k) results in 
X 

Comparing  equation (A101 with equation (A1 3)  gives 

The  derivatives  can be obtained from equat 

follows : 

= (tan-1 A) 

or 
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Similarly, 

From  equation (Ad),  the  following  expressions can be obtained for the deriva- 

Combining  equations ( A l 6 )  and ( A l 8 )  gives  the  following  expression for (2); 

Similarly,  from equations (A17) and (A19) ,  
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From equat ions (Al2)  and (MO), 

Simi la r ly ,  fran equat ions (A1 4 ) ,  (A20) , and (A21) , 

I n  summary, t h e   t r a n s f o r m a t i o n  operators def ined by e q u a t i o n s  (A7) and (A8) can 

be used w i t h  equa t ion  (A22) which  def ines  (E). and equa t ion  (A23) which 

d e f i n e s  ( E)4 to t r a n s f o r m   d e r i v a t i v e s   f r o m   c y l i n d r i c a l   m o r d i n a t e s  to local 

polar m o r d i n a t e s .  The q u a n t i t i e s  Rb,  ro, - , and (2) used 

in   t he   p rev ious   equa t ions  m u s t  be obtained  f rom  the  geometry  descr ipt ion 
program. 

d r 0  

dX ax @ 

These operators w i l l  now be used to  t r ans fo rm  the   equa t ions   fo r   t he  body 
gecmetry  angles 6$ and r f r a n   c y l i n d r i c a l   c o o r d i n a t e s  to  local polar 
coord ina te s .  First, w n s i d e r  6$ which is given by equa t ion  (21) 
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Using  equation (A7), t he   de r iva t ive   can  be w r i t t e n  as 

= @i2)x 
Fran equation ( A l l ,  

S u b s t i t u t i n g   t h i s   r e s u l t   i n t o   e q u a t i o n  (A24) and  using equation ( A l )  g i v e s  

where r:) is given by equat ion  (A22) and is given  by  equation 
X 

Next,  consider r which is  given by equa t ion  (22) 
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From  equation (A8),  the  derivative  can  be  wr  it  ten as 

From  equation (A11 I 

L 

Substituting  equation (A29) into  equation (A28) 

2 

yields 

where r<)$ is given  by  equation (A231 I is  given  by  equation (A26) I 

and (:)@ is  given  by  equation (A29) .  

Next,  consider  the  transformation of the  equation  describing  the  streamline 
location  (eq. ( 1 9 ) ) :  

from  cylindrical  coordinates @,X to local  polar  coordinates @,x. Using 
equations (A2) and ( A 4 ) ,  the  following  are  obtained: 
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and 

Now, canbining  equations (A33) and (A34) and s o l v i n g   f o r  ra6 y i e l d s  

Next,  changing from an x,@ coordinate  system to an x,@  coordinate  system, 

Further,  using  equations (A7) and (A8) ,  

or rearranging  terms, 

Now, s ince   ro  = r o  (x), 
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With the use of equation (A38), the  following is obtained: 

where . r;)+ is given by equation (A23),  is given by equation (A32), 

is given by equation (A22),  and (2) x and (5) are given by 
ax 0 

the geometry description program QUICK. 
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CALCULATION OF SURFACE VELOCITY DIRECTION FROM 

INVISCID SOLUTION 

I n  order to i n t e g r a t e   e q u a t i o n  ( 3 0 )  to de termine   the   loca t ion   of  a stream- 
l i n e  on t h e  surface, it is necessa ry  ,to know 0 = 0( 4, x). T h i s  must be ob ta ined  
from a s o l u t i o n   o f   t h e   i n v i s c i d  flow f ie ld .  The   so lu t ion  is ob ta ined   u s ing   t he  
STEIN ( supe r son ic   t h ree -d imens iona l   ex t e rna l   i nv i sc id )  flow f i e l d  code described 
in   r e f e rences   17   and   19 .  From t h e  i n v i s c i d   s o l u t i o n   t h e   C a r t e s i a n   v e l o c i t y  com- 
ponents are known; these   can   then  be used to  d e t e r m i n e   t h e   v e l o c i t y   d i r e c t i o n  e 
on t h e   s u r f  ace. 

Consider   sketch (a),  which shows the   Car tes ian   ve loc i ty   components  w1,  w2, 
and w3, and  sketch (b), which  shows a cross-sect ion  plane  normal  t o  t h e  body 
a x i s  : 

The 

Y 

X 

Sketch (a) 

- 
veloci ty   ccmponents   vt   and  vn are given by 

v t  = w 3  cos (4  - 64) - w2 s i n  (4 - 64) 

- 
vn = ~3 s i n  (4 - 64) + w2 COS (4 - 64) 

Sketch 

t h e  e q u a t i o n s  
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Now, i n  a plane parallel to the   ax is   and   normal  to  t h e  body  shown i n   s k e t c h  (c),  

Sketch (c) 

t h e   v e l o c i t y  component  tangent to t h e  body wt is g iven  by t h e   e q u a t i o n  

- 
w t  = v n   s i n  I‘ + w1 03s r 

F i n a l l y ,   t h e   s t r e a m l i n e   d i r e c t i o n  8 is g iven  by t h e   e q u a t i o n  

e = tan”  (vt/wt) 
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DEVELOPMENT OF EQUATIONS FOR CALCULATING 

HEAT-TRANSFER RATE AT WALL 

The hea t - t r ans fe r  rate to t h e  wall qw is given by t h e   e x p r e s s i o n  

q w  = ..(E), 
where k i s  the   thermal   conduct iv i ty  of t h e   f l u i d   a n d  is t h e   d e r i v a t i v e  

of   the temperature of   the   f lu id   normal  to  t h e  wall. Equation  (Cl)  can be 
r e w r i t t e n   i n  terms of t h e  s ta t ic  e n t h a l p y   d e r i v a t i v e  as follows: 

Neglect ing cross f low  in   t he   boundary   l aye r ,   t he  s ta t ic  en tha lpy  h is r e l a t e d  
to  t h e  t o t a l  enthalpy H by t h e   e q u a t i o n  

u2 + w2 
h = H -  

2 

D i f f e r e n t i a t i n g   t h e  terms i n   e q u a t i o n  (C3) wi th  respect to  n y i e l d s  

and  s ince u = w = 0 a t  t h e  wall, 
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S u b s t i t u t i n g   e q u a t i o n  (C4) i n t o  (C2) y i e l d s  

Mult iplying  and  dividing  the  r ight-hand side of equa t ion  (C5) by pw  y ie lds  

The laminar  boundary-layer  equations are u s u a l l y   s o l v e d   i n  a Levy-Lee type 
coordinate   system (5,:) given by the   fo l lowing   equa t ions   ( r e f .   25 )  : 

Using   these   var iab les ,   equa t ion  (C6) can be transformed to the   fo l lowing  form: 

The total  enthalpy i n  equa t ion  (C9) can be nondimensionalized by mul t ip ly ing   and  
d iv id ing   t he   r i gh t -hand  side by He (which is independent of 6 )  to o b t a i n   t h e  
f ollawing: 
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Now d e f i n i n g  

c; 3 
equa t ion  (Cl 0) can   be   wr i t ten  as 

which is t h e  same as equa t ion  (34). 

I n   r e f e r e n c e  25 it was shown t h a t  C; could be approximated by t h e  
expres s ion  

where $ is t h e   v e l o c i t y   g r a d i e n t  parameter given by the   equa t ion  
- 

Equation ((213) p r e d i c t s   v a l u e s   o f  CL t h a t   a g r e e   w i t h  tabulated r e s u l t s   f r o m  
boundary - l aye r   so lu t ions   p re sen ted   i n   r e f e rence  26 to  w i t h i n  + l o  p e r c e n t   f o r  
the   fo l lowing   range   of   condi t ions :  

0.1835 rE) ,< 0.9367 
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0.2 i te 6 1.0 

0.0076 =< cW 5 0.75 

Thus,  from equat ions (C12)  and  (C13), hea t ing  rates can be r a p i d l y   c a l c u l a t e d  
from  boundary-layer  edge  and wall parameters  without  having to s o l v e   t h e  com- 
plete set of  boundary-layer par t ia l  d i f f e r e n t i a l   e q u a t i o n s   ( 7 )  to  (10) .  

I n   t he   p re sen t   s tudy ,  it was found   t ha t  a s l i g h t l y  more a c c u r a t e   p r e d i c t i o n  
of z,$ could be ob ta ined  by us ing   the   fo l lowing   equat ion  (same as eq. (36) )  : 

where Taw is given by 

and  the wall r ecove ry   f ac to r  EtF for  laminar  f low is assumed to be 

Predicted  values   of  & from  equation (C15) agree   wi th  results of  the  bound,ary- 
l a y e r   s o l u t i o n s   p r e s e n t e d   i n   r e f e r e n c e  26 to wi th in   approximate ly  -+4 p e r c e n t   f o r  
the  following  range  of  conditions:  

38 

0.1 835 6 r-) 5 1.385 

0.2 2 t, s 1.0 

0.0076 6 ?& 5 0.75 

(C18a) 

(C18b) 

(C18c) 



APPENDIX c 

0 s B s 3.5 
- 

(Cl 8d) 

A few  typical  comparisons are presented in table I. 

The  range  of conditions over which  equation  (C15)  has been correlated 
covers  the  range of  exper.imenta1 conditions of interest in the present  study 
which are given for experimental  data by the following: 

(C19a) 

0.4 6 te 6 1.0 (Cl9b) 

0.27 6 cw 6 0.33 (C19c ) 

0 6 $ 6 0.7 
- 

(Cl9d) 

Equations (C12) (or eq. (34) ) and ((215)  (or  eq. (36) ) have  been  used in the 
present  study  to  provide  a  simple but accurate  method of calculating  heating 
rates  along.  a  surface  streamline. 
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TABm I .- COMPARISCN OF VALUES OF <; FROM EQUATION (CIS) WITH EXACT 

SIMILAR BOUNDARY-LAYER SOLUTIONS FROM REFERENCE 26 

Pep e 

PWPW 
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0.51 22 

I 
I 
1 
I 
1 
1 
1 
1 
I 
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.9149 

1.3850 

.2322 

.2 505 

.3462 

.6249 

.3897 

.7931 

.9367 

1.081 0 

t e  
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1.0 
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1 

1 

1 .o 

1 i2  .o 

iB 
. i s  

i4 
is . 2  

1' 
1 
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i4 

0.152 

1 
I 
1 
1 
1 
1 
1 
1 
1 
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.75 

.5 

. 01 52 

. 01 52 

.03 

.10 

.05 

.10 

.50 

.50 

.735 

I 
I 
1 
I 
1 
1 
1 
I 
1 

.699 

.709 

.709 

.680 

.768 

.768 

.768 

.699 

.699 

- 
B 
- 
0 

.5 
3.5 
0 

.5 
3.5 
0 
1.0 
3.4 
0 

.5 
3.4 
0 

.5 
3.2 
0 

.5 
3.0 
0 

.5 
3.5 
0 
.5 

3.2 
0 

.5 
3.5 
0 

.5 
3.5 
0 

- 5  
3.5 - 

R e f e r e n c e  26 

0.2845 
.3055 
.3377 
. lo13 
.1141 
.1316 
.1518 
.1697 
.1817 
.2230 
.2399 
.2659 
.2206 
.2365 
.2616 
.2293 
.2454 
,271 5 
.2891 
.3099 
.3498 
.2871 
.3087 
.3426 
.2889 
.3086 
.3518 
.1723 
.1882 
.2118 . 1 628 
.1763 
.1978 

Equation (Cl 5) 

0.2755 
.2969 
.3322 
. lo49 
.1130 
.1265 
.1479 
.1641 
.1778 
.2256 
.2431 
.2713 
.2246 
.2421 
.2688 
.2308 
.2487 
.2747 
.2  940 
.3169 
.3545 
.2877 
.31 01 
.3444 
.2947 
.3177 
.3554 
.1700 
.1832 
.2050 
.1587 
.1711 
.1  91  4 

Per cent 
er r or 

-3.1  6 
-2.82 
-1.63 

3.55 -. 96 
-3.88 
-2.57 
-3.30 
-2.1  5 

1.17 
1.33 
2.03 
1  .81 
2.37 
2.75 

.65 
1.34 
1.18 
1.69 
2.26 
1.34 

.21 

.45 

.53 
2.01 
2.95 
1 .02 

-1.33 
-2.66 
-3.21 
-2.52 
-2.95 
-3.24 
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Figure 1.- Typical  surface  streamlines and boundary-layer velocity profile. 
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Figure  2.- Typical advanced   reent ry   vehic le .  
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Figure 3 . -  Cylindrical  coordinate system. 
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Figure 4.- Local polar coordinate  system. 
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Init ial   data  plane 

Figure 5 . -  Il lustration of flow field  calculation procedure. 
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OA = rb 

AC i s   no rma l  to body at A 

AB i s  projection of AC on cross-sectional  plane 
Figure 7.- Definition of body-geometry  angles 6$ and l?. 



Figure 8,- Definition of velocity-direction angle 8. 
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Figure 9.- Comparison of metric  coefficients with  body  cross-sectional radius 
for spherically blunted 1 5O half-angle  cone. a = Oo; M, = 1 0.6; y = 1 . 4 .  
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Figure 9.- Concluded. 
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Figure 10.- Axial  distribution of heating  rate on  a  spherically blunted 15O half-angle 
cone at Q = Oo. M, = 10.6; y = 1.4; NRercD = 1.31 x lo6 per meter; Sw = 0.27: 
R, = 0.95 an; q, = 224.32 kW/m2-s. 
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Figure 1 1  .- Axial  distribution of heating  rate on a  spherically  blunted 15O half-angle 
cone at a = 100. M, = 10.6: y = 1 . 4 ;  NR~,, = 1.31 x lo6 per  meter: Tw = 0.27; 
qs = 224.32  kW/m2-s. 
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(a) x/Rn = 3 . l  . 
Figure  12 .- Circumferential   distribution of heating  rate  on a spherical l   blunted 1 So 

half-angle  cone a t  a = 100. = 10.6; y = . 1 . 4 ;  NRe,,- = 1.31 x per  meter; 
GW = 0.27;  qs = 224.32 kw/m2-s. 
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Figure  13.-  Axial d i s t r i b u t i o n  of heat ing   ra te   on  a s p h e r i c a l l y  
blunted 1 So half-angle   cone a t  a = 20°. Q = 10.6;  y = 1 .4; 
N R ~ , ~  = 1.31 x 106  per  meter; TW = 0.27; qs = 224.32 kW/rna-s. 
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(a) X/Rn = 3.1. 

0 Reference 28; Rn = 2.79 cm 

- 0 Reference 28; Rn = 0.95 cm 
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Figure 14.- Circumferential distribution of heating  rate on a spherically  blunted 15' half- 
angle  cone  at a = 20°. M, = 10.6; y = 1.4;  NR~,, = 1.31 x lo6 per meter; Sw = 0.27; 
qs = 224.32 kW/m2-s. 





Z 

Figure 16 .- Geometry of s h i f t e d  pole for spherical ly   blunted 1 So half-angle  cone 
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Figure 17.- Comparison of axial  heat-transfer  calculations on a  spherically  blunted 1 5 O  
half-angle cone  with  shifted  and  unshifted  poles  at a = Oo. M, = 10.6; y = 1.4; 
N R ~ , ~  = 1.31 x l o 6  per meter; 5, = 0.27; Rn = 0.95 c m ;  q, = 224.32 kW/m2-s. 
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Figure  18.-   Caparison of axia l   heat - transfer   ca lculat ions  on a spherical ly   blunted 15O 

half-angle   cone  with  shifted and unshifted poles a t  CL = loo.  M, = 10.6;  3 = 1 . 4 ;  
NRe ,QJ = 1.31 X 1 O 6  per  meter; 5, = 0.27: Rn = 0.95 c m ;  qs = 224.32 kW/m -s, 
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(b) x& = 12.0 .  

Figure 19.- Comparison of circumferential heat-transfer calculations on a  spherically  blunted 15O 
half-angle cone  with  shifted  and  unshifted  poles  at U = 1 Oo. Eb, = 10.6; y = 1.4;  
NRe,= = 1.31 x l o6  per  meter; 5, = 0.27; Rn = 0.95 cm; qs = 224.32 kW/m2-s. 
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Figure 20.- 80° sweep slab delta wing. R, = 1 . 2 7  cm. 
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Figure 21.- Axial  distribution of heat-transfer coefficient in windward 

symmetry plane of 80° sweep slab  delta wing at a = Oo. M, = 9.6; 
Y = 1 . 4 ;  N R ~ , ~  = 3.94 x l o 6  per meter; CW = 0.33; R, = 1.27 cm; 
hs = 0.3796 kW/m2-s-K. 
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Figure  22.-   Circumferential  distribution of heat-transfer  coeff ic ient   on a spherical ly   blunted 
80° sweep d e l t a  wing a t  o! = Oo. M, = 9.6;  Y = 1.4:  NRe,oo = 3.94 x l o 6  per  meter; 
Sw = 0.33;  Rn = 1 .27 hs = 0.3796 kW/m2-s-K. 
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Figure  23.- Axial d i s t r i b u t i o n  of h e a t - t r a n s f e r   c o e f f i c i e n t   i n  windward symmetry 
plane of spherica l ly   b lunted 80° sweep s l a b   d e l t a  wing a t  a = loo .  M, = 9 . 6 ;  
y = 1 .4 ;  NRe,oD ;-3.94 x 1 O6 per meter; 5" = 0.33;  Rn = 1 .27 cm; 
hs = 0.3796 kW/m s -k .  
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Figure 24.- Circumferential  distribution  of heat-transfer coefficient on spherically  blunted 
80° sweep slab  delta  wing  at OC = 1 Oo, M, = 9.6: y = 1.4; NReroo = 3.94 x 1 O6 per  meter: 
cw = 0.33;  Rn = 1 .27 cm: hs = 0.3796 kW/m2-s-R. 
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Figure 25.- Axial d i s t r i b u t i o n  of h e a t - t r a n s f e r   c o e f f i c i e n t   i n  windward 
symmetry plane of a spher ica l ly   b lunted  80° d e l t a  wing a t  
a = 20°. % = 9.6; y = 1.4; %e,oo = 3.94 zw::g per  meter; 
G W  = 0.33; Rn = 1.27 c m ;  hs = 0.3796  kW/m2-s-K. 
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Figure 26.- Circumferential  distribution of heat- transfer   coef f ic ient  on a  spherical ly   blunted 
80° sweep s l a b   d e l t a  wing a t  a = 200. M, = 9.6;  y = I .  4; NReloo = 3.94 x I 06 per meter; 
cw = 0.33;  Rn = 1 .27  cm; hs = 0.3796 kW/m2-s-K. 



(a) Side  view.  

(b) Bottom view. 

Figure 2 7 . -  Inviscid  surface  streamline  pattern  on a spherica l ly   b lunted 
80° s w e e p   s l a b   d e l t a  wing a t  a = Oo. M, = 9 - 6 ;  y = 1 . 4 .  
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Section A -A I 

% A  
Figure 28.-  Space Shuttle  Orbiter  type  configuration. 
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Figure 29.- Axial   distribution of heat-transfer  coeff ic ient  on 

Shuttle  Orbiter  type  configuration a t  o! = 20°. M, = 7.9;  
Y = 1 .4 ;  NRe,, 5, - 1 . 6 4  x l o 6  per  meter; Sw = 0.31;  
h, = 0.4984 kW/m s-K. 
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(a) x/L = 0.4. (b) x/L = 0.5. 

Figure 3 0 . -  Lateral  distribution of  heat-transfer coefficient 
on Space  Shuttle Orbiter  type configuration at a = 20°. 

Gw = 0.31 ; hr = 0.4984 kW/m2-s-K. 
M, = 7 . 9 ;  y = 1 . 4 ;  N R ~ , ~  = 1 .64  x l o 6  per  meter; 
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Figure 31 .- Axial  distribution  of  heat-transfer  coefficient 
on Space  Shuttle  Orbiter  type  configuration  at a = 25O. 

Sw = 0.31 ; hr = 0.4984  kW/m2-s-K. 
M, = 7.9; y = 1.4;  NR~,, = 1 . 6 4  x l o 6  per meter; 
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